A Novel Synthesis of 5-0xo- and 7-0xo-pyrido[2,3-d]pyrimidines¹⁾ Haruo OGURA and Masakazu SAKAGUCHI School of Pharmaceutical Sciences, Kitasato University Shirogane, Minato-ku, Tokyo 108 5-0xo- (VI) and 7-oxo-pyrido[2,3- \underline{d}]pyrimidines (IV) were synthesized from 6-amino-1,3-dimethyluracil derivatives (I) with dimethyl acetylenedicarboxylate or diketene. Analogously, 5-oxothiopyrano[2,3- \underline{d}]pyrimidine (VIII) was obtained from VII and diketene. Recently, Shim <u>et al.</u>²⁾ reported that the reaction of various N-alky1-6-aminouracils (I) with dimethyl acetylenedicarboxylate in dimethylformamide gave 6-amino-5-(methoxycarbony1-2-propinoyl)uracils (II) and they could not obtain cyclized pyrido[2,3-d]pyrimidines. In this communication we describe the reaction of 6-amino-1,3-dimethyluracil and its 6-substituted amino derivatives (Ia,b,c,d) with dimethyl acetylenedicarboxylate in methanol to obtain cyclized compounds. a: R=H b: R=Me c: $R=C_6H_5$ d: $R=CH_2C_6H_5$ Treatment of Ia with dimethyl acetylenedicarboxylate in MeOH at room temperature gave an open-chain intermediate (IIIa) in 24% yield, cyclization of which by heating in dimethylformamide produced 1,3-dimethyl-5-methoxycarbonyl-2,4,7-trioxopyrido[2,3-d]pyrimidine (IVa). Heating of Ia with dimethyl acetylene-dicarboxylate under reflux in MeOH gave the cyclized 7-oxo compound (IVa) in 71% yield, and a small amount of 5-oxo compound (Va). 5-Oxo compounds (Va,b,c) show a typical band in nmr spectrum at 6-H, δ 7.13, 7.08, and 7.42 ppm, respectively. This value differs from that of 7-oxo compounds (IVa,b,c) which appear at δ 6.42, 6.65, and 6.34 ppm, respectively. I VI VII VIII on the other hand, reaction of Ia,b,c,d with diketene gave single compounds, 5-oxopyrido[2,3-d]pyrimidines (VIa,b,c,d), and 7-oxo compound was not obtained. Compound VIa was also obtained from Ia and ethyl acetoacetate. The reaction of 1,3-dimethyl-6-mercaptouracil (VII) with diketene gave 5-oxothiopyrano[2,3-d]-pyrimidine (VIII). From nmr spectra of these compounds (VIa,b,c,d, and VIII), 6-H appeared at δ 6.46, 6.97, 6.29, 6.50, and 6.76 ppm and this value coincides with that of 5-oxo compound. These reaction mechainisms may be represented by the sequence shown in above. An intermolecular proton transfer from amino group may take two routes, and this produced the intermediates \underline{a} and \underline{b} with an olefinic group attached to the C-1 position (\underline{a}) or to the amino group (\underline{b}). These intermediates underwent cyclization to 7-oxo or 5-oxo compound (IV or V). It is interesting that this result is different from the reaction of 2-amino-benzothiazole, benzoxazole, and benzimidazole with dimethyl acetylenedicarboxylate. 3) ## References - 1) H. Ogura and M. Sakaguchi, Abstr. Papers, 92nd Annu. Meet. Pharm. Soc. Japan, II-18 (1972). - 2) J. L. Shim, R. Niess, and A. D. Broom, <u>J. Org. Chem</u>., 37, 578 (1972). - 3) H. Ogura, M. Kawano, K. Kikuchi, and T. Itoh, Abstr. Papers, 3rd Int. Congr. Heterocyclic Chem., 506 (1971). (Received May 26, 1972)